A genetic-based algorithm for personalized resistance training
نویسندگان
چکیده
Association studies have identified dozens of genetic variants linked to training responses and sport-related traits. However, no intervention studies utilizing the idea of personalised training based on athlete's genetic profile have been conducted. Here we propose an algorithm that allows achieving greater results in response to high- or low-intensity resistance training programs by predicting athlete's potential for the development of power and endurance qualities with the panel of 15 performance-associated gene polymorphisms. To develop and validate such an algorithm we performed two studies in independent cohorts of male athletes (study 1: athletes from different sports (n = 28); study 2: soccer players (n = 39)). In both studies athletes completed an eight-week high- or low-intensity resistance training program, which either matched or mismatched their individual genotype. Two variables of explosive power and aerobic fitness, as measured by the countermovement jump (CMJ) and aerobic 3-min cycle test (Aero3) were assessed pre and post 8 weeks of resistance training. In study 1, the athletes from the matched groups (i.e. high-intensity trained with power genotype or low-intensity trained with endurance genotype) significantly increased results in CMJ (P = 0.0005) and Aero3 (P = 0.0004). Whereas, athletes from the mismatched group (i.e. high-intensity trained with endurance genotype or low-intensity trained with power genotype) demonstrated non-significant improvements in CMJ (P = 0.175) and less prominent results in Aero3 (P = 0.0134). In study 2, soccer players from the matched group also demonstrated significantly greater (P < 0.0001) performance changes in both tests compared to the mismatched group. Among non- or low responders of both studies, 82% of athletes (both for CMJ and Aero3) were from the mismatched group (P < 0.0001). Our results indicate that matching the individual's genotype with the appropriate training modality leads to more effective resistance training. The developed algorithm may be used to guide individualised resistance-training interventions.
منابع مشابه
Letter to the editor: A genetic-based algorithm for personalized resistance training
In a recent paper entitled "A genetic-based algorithm for personalized resistance training", Jones et al. [1] presented an algorithm of 15 performance-associated gene polymorphisms that they propose can determine an athlete's training response by predicting power and endurance potential. However, from the design of their studies and the data provided, there is no evidence to support these autho...
متن کاملA response to letter to the editor: A genetic-based algorithm for personalized resistance training
COMMENT Following the recent publication of our paper, “A genetic-based algorithm for personalized resistance training” [1], we read with interest the recent Letter from Karanikolou et al. [2] discussing the proposed limitations within our study. First, to clarify a point; the Authors of the Letter say: “Based on this derived power/endurance score, subjects were assigned to either an endurance ...
متن کاملLetter to the editor: Are the doors opened to a genetic-based algorithm for personalized resistance training?
متن کامل
Human Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملHuman Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 33 شماره
صفحات -
تاریخ انتشار 2016